3 research outputs found

    Radiocarbon Date List XI: Radiocarbon Dates from Marine Sediment Cores of the Iceland, Greenland, and Northeast Canadian Arctic Shelves and Nares Strait

    Full text link
    Radiocarbon Date List XI contains an annotated listing of 178 AMS radiocarbon dates on samples from marine (169 samples) and lake (9 samples) sediment cores. Marine sediment cores, from which the samples for dating were taken, were collected on the Greenland Shelf, Baffin Bay, and the Eastern Canadian Arctic shelf. About 80% of the marine samples for dating were collected on the SW to N Icelandic shelf. The lake sediment cores were collected in northwestern Iceland. For dating of the marine samples, we submitted molluscs (117 samples), benthic and planktic foraminifera (45 samples), plant macrofauna (3 samples), and one serpulid worm. For dating of the lake cores, we submitted wood (8 samples) and one peat sample. The Conventional Radiocarbon Ages range from 294±9114C yr BP to 34,600±640 14C yr BP. The dates have been used to address a variety of research questions. The dates constrain the timing of high northern latitude late Quaternary environmental fluctuations, which include glacier extent, sea level history, isostatic rebound, sediment input, and ocean circulation. The dates also allowed assessment of the accuracy of commonly used reservoir correction. The samples were submitted by INSTAAR and affiliated researchers

    Holocene changes in marine productivity and terrestrial organic carbon inputs into an Icelandic fjord: Application of molecular and bulk organic proxies

    No full text
    This study examines the dynamics of organic carbon contributions from different sources to the sediments of a ~39 m core from Ísafjarðardjúp Fjord, Northwest Iceland, throughout the Holocene. Furthermore, it shows that the variability of terrestrial organic carbon (OCterr) and marine organic carbon (OCmar) is linked to palaeoclimatic change throughout the Holocene. glycerol-dialkyl-glycerol-tetraether (GDGT), alkenone, n-alkane, total OC and total nitrogen analyses were conducted on 326 samples to yield high-resolution branched versus isoprenoid tetraether index (BIT-index), n-alkane/alkenone index and C/N ratio records from ~10,800 to ~300 cal. a BP. These records were used to estimate the OCterr and the OCmar contributions to the sediments. Three different approaches of estimating the OCterr contribution yield different relative amounts, but similar long-term trends. These results indicate that the combination of biomarker records is a good approach to reconstruct OCterr contributions but also highlight the strengths and weaknesses of the individual biomarkers. The OCterr contribution to the total OC inventory continually increases throughout much of the Holocene but does not rise above 30%. It seems to have been driven by changing climate rather than changing sedimentation rates, and during the late Holocene, anthropogenic activity may have been an influence. The reconstructed OCmar contribution to the sediment was used to model changes in palaeoproductivity throughout the Holocene. These changes were likely forced by changes in nutrients supplied both by the catchment area and the Irminger Current
    corecore